On the Decomposition of Hilbert Spaces

\author{
H.R. Afshin* and M.A. Ranjbar
 Department of Mathematics, Vali-e-Asr university, Rafsanjan, Iran
 ```
E-mail: afshin@vru.ac.ir
 E-mail: mranjma@yahoo.com

```
}

\begin{abstract}
A basic relation between numerical range and Davis-Wielandt shell of an operator \(A\) acting on a Hilbert space with orthonormal basis \(\xi=\left\{e_{i} \mid i \in I\right\}\) and its conjugate \(\bar{A}\) which is introduced in this paper are obtained. The results are used to study the relation between point spectrum, approximate spectrum and residual spectrum of \(A\) and \(\bar{A}\). A necessary and sufficient condition for \(A\) to be self-conjugate \((A=\bar{A})\) is given using a subgroup of H .
\end{abstract}

Keywords: Numerical range, Davis-Wielandt shell, Spectra, Conjugate of an operator.

2000 Mathematics subject classification: 47A12, 47B15.

\section*{1. Introduction}

Let \(H\) be a Hilbert space and \(B(H)\) be the algebra of bounded linear operators acting on \(H\). The numerical range of \(A \in B(H)\) is defined by
\[
W(A)=\{\langle A x, x\rangle \mid x \in H,\|x\|=1\} ;
\]
see \([4,5,6,7]\). The numerical range is useful to study matrices, operators and to classify them. For example \(W(A)=\{\mu\}\) if and only if \(A=\mu I\) and \(W(A) \subseteq \mathbb{R}\) if and only if \(A=A^{*}\). Also, there are nice connections between \(W(A)\) and spectrum \(\sigma(A)\). For instance \(\sigma(A) \subseteq \operatorname{cl} W(A)\) where \(\mathrm{cl} W(A)\) is the closure of \(W(A)\) and \(\mathrm{cl} W(A)=\operatorname{conv} \sigma(A)\) if A is normal \((\operatorname{conv} \sigma(A)\) is the

\footnotetext{
* Corresponding Author

Received 5 February 2010; Accepted 14 November 2010 (c)2011 Academic Center for Education, Culture and Research TMU
}
convex hull of \(\sigma(A)\) ). The Davis-Wielandt shell of an operator \(A \in B(H)\) is a generalization of the classical numerical range and it is defined by
\[
D W(A)=\{(\langle A x, x\rangle,\langle A x, A x\rangle): x \in H,\|x\|=1\}
\]
see \([1,2,9]\). In fact \(W(A)\) is the projection of \(D W(A)\) on the first coordinate.
In this paper, we introduce the conjugate of \(A \in B(H)\) and obtain the relation between \(D W(A)\) and \(D W(\bar{A})\). Also we obtain some relations between point spectrum, approximate spectrum and residual spectrum of \(A\) and \(\bar{A}\). In section 3 we obtain a necessary and sufficient condition for \(A\) to be selfconjugate \((A=\bar{A})\) by a subgroup of H . Also we find the form of an operator \(D \in B(H)\) such that \(W(D) \subseteq\{(x, x) \mid x \in \mathbb{R}\}\).

\section*{2. The conjugate of an operator}

In [8], for \(A \in B(H), A^{t}\) is defined. In the following we introduce a new operator that has similar properties.

Definition 2.1. Let \(H\) be a Hilbert space, \(A \in B(H)\) and \(\xi=\left\{e_{i} \mid i \in I\right\}\) be an orthonormal basis of \(H\). The conjugate of \(A\) with respect to \(\xi\) is the operator \(\bar{A}_{\xi} \in B(H)\) defined by
\[
\left\langle\bar{A}_{\xi} e_{i}, e_{j}\right\rangle=\overline{\left\langle A e_{i}, e_{j}\right\rangle},
\]
for every \(i, j \in I\).
Let \(x=\sum_{i \in I} x_{i} e_{i} \in H\). Define \(\bar{x}=\sum_{i \in I} \bar{x}_{i} e_{i}\), where \(\bar{x}_{i}\) is the complex conjugate of \(x_{i}\). Let \(y=\sum_{j \in I} y_{j} e_{j} \in H\). we have
\[
\left\langle\bar{A}_{\xi} x, y\right\rangle=\sum_{i} \sum_{j} x_{i} \bar{y}_{j}\left\langle\bar{A}_{\xi} e_{i}, e_{j}\right\rangle=\overline{\sum_{i} \sum_{j} \bar{x}_{i} y_{j}\left\langle A e_{i}, e_{j}\right\rangle}=\overline{\langle A \bar{x}, \bar{y}\rangle}
\]

By the above discussion we see that the definition of \(\overline{A_{\xi}}\) is independent of \(\xi\), so we denote the conjugate of \(A\) by \(\bar{A}\).
Also we know that \(\langle\bar{x}, \bar{y}\rangle=\overline{\langle x, y\rangle}\) and we have \(\overline{\langle A \bar{x}, \bar{y}\rangle}=\langle\bar{A} x, y\rangle=\langle\overline{A \bar{x}}, y\rangle\) for every \(x, y \in H\). Hence \(\bar{A} x=\overline{A \bar{x}}\). Furthermore, we recall that
\[
\left\langle A^{t} x, y\right\rangle=\langle A \bar{y}, \bar{x}\rangle,
\]
for every \(x, y \in H[8]\).
Lemma 2.2. Let \(A, B \in B(H)\) and \(\alpha \in \mathbb{C}\) be an arbitrary constant. Then:
a) \(\bar{A}=\left(A^{t}\right)^{*}\);
b) \(\overline{(A+\alpha B)}=\bar{A}+\bar{\alpha} \bar{B}\) and \(\overline{A B}=\bar{A} \bar{B}\).

Proof. a)We have
\[
\left\langle\left(A^{t}\right)^{*} x, y\right\rangle=\left\langle x, A^{t} y\right\rangle=\langle\bar{y}, A \bar{x}\rangle=\overline{\langle A \bar{x}, \bar{y}\rangle}=\langle\bar{A} x, y\rangle,
\]
for every \(x, y \in H\). Thus the assertion follows.
b) Let \(x, y \in H\) be arbitrary. then
\[
\langle(\overline{A+\alpha B}) x, y\rangle=\overline{\langle(A+\alpha B) \bar{x}, \bar{y}\rangle}=\overline{\langle A \bar{x}, \bar{y}\rangle}+\overline{\langle\alpha B \bar{x}, \bar{y}\rangle}=\langle\bar{A} x, y\rangle+\bar{\alpha}\langle\bar{B} x, y\rangle=
\]
\(\langle(\bar{A}+\bar{\alpha} \bar{B}) x, y\rangle\).
Since \(x, y\) are arbitrary, the result follows. On the other hand,
\(\begin{aligned}\langle(\overline{A B}) x, y\rangle & \left.=\overline{\langle(A B) \bar{x}, \bar{y}\rangle}=\overline{\langle A(B \bar{x}), \bar{y}\rangle}=\overline{\left\langle B \bar{x}, A^{*} \bar{y}\right\rangle}=\left\langle\bar{B} x, \overline{A^{*} *} \overline{\bar{y}}\right\rangle \overline{\langle\bar{B} x}, A^{*} \bar{y}\right\rangle \\ \left.\left.\frac{\langle A(\bar{B} x}{}\right), \bar{y}\right\rangle & =\langle\bar{A}(\bar{B} x), y\rangle=\langle(\bar{A} \bar{B}) x, y\rangle\end{aligned}\) and hence \(\overline{A B}=\bar{A} \bar{B}\).

Recall that the point spectrum of \(A \in B(H)\) is the set \(\sigma_{p}(A)\) of eigenvalues of \(A\). The residual spectrum of \(A\) is the set \(\sigma_{r}(A)\) of complex numbers \(\lambda\) such that the range of \(\lambda I-A\) is not dense in \(H\). The approximate spectrum of \(A\) is the set \(\sigma_{a}(A)\) of complex numbers \(\lambda\) such that there exists a sequence of unit vectors \(\left\{x_{n}\right\}_{n=1}^{\infty}\) in \(H\) such that \(\lim _{n \rightarrow \infty}\left\|(\lambda I-A) x_{n}\right\|=0\). It is well known that \(\sigma_{p}(A) \subseteq \sigma_{a}(A)\) and \(\sigma(A)=\sigma_{a}(A) \bigcup \sigma_{r}(A)\); see [3].
In the following theorem, we obtain some relations between the Davis-Wielandt shell and the spectrum of \(A\) and \(\bar{A}\).

Theorem 2.3. . Let \(A \in B(H)\). Then:
a) \(D W(\bar{A})=\{(\bar{\mu}, r) \mid(\mu, r) \in D W(A)\}\)
b) \(\sigma_{p}(\bar{A})=\overline{\sigma_{p}(A)}, \sigma_{a}(\bar{A})=\overline{\sigma_{a}(A)}\) and \(\sigma_{r}(\bar{A})=\overline{\sigma_{r}(A)}\).

Proof. a) \((\mu, r) \in D W(\bar{A})\) if and only if \(\langle\bar{A} x, x\rangle=\mu,\langle\bar{A} x, \bar{A} x\rangle=r\) for some unit vector \(x\). Since \(\langle\bar{A} x, x\rangle=\overline{\langle A \bar{x}, \bar{x}\rangle}\) and \(\|\bar{x}\|=1\), then \(\bar{\mu}=\langle A \bar{x}, \bar{x}\rangle \in W(A)\). Also
\[
\langle\bar{A} x, \bar{A} x\rangle=\overline{\langle A \bar{x}, \overline{\bar{A} x}\rangle}=\overline{\langle\bar{A} x, \overline{A \bar{x}}\rangle}=\langle A \bar{x}, A \bar{x}\rangle .
\]

Therefore
\((\mu, r)=(\langle\bar{A} x, x\rangle,\langle\bar{A} x, \bar{A} x\rangle) \in D W(\bar{A}))\) if and only if \((\langle A \bar{x}, \bar{x}\rangle,\langle A \bar{x}, A \bar{x}\rangle)=\) \((\bar{\mu}, r) \in D W(A)\), and the result follows.
b) \(\mu \in \sigma_{p}(\bar{A})\) if and only if \(\langle(\bar{A}-\mu I) x, y\rangle=0\) for all \(y \in H\) and some nonzero vector \(x\). We have \(\langle(\bar{A}-\mu I) x, y\rangle=0\) if and only if \(\langle(A-\bar{\mu} I) \bar{x}, \bar{y}\rangle=\) \(\overline{\langle(\bar{A}-\mu I) x, y\rangle}=0\). Thus the first assertion holds.
We know that \(\mu \in \sigma_{a}(\bar{A})\) if and only if there is a sequence \(\left\{x_{n}\right\}_{n=1}^{\infty}\) of unit vectors such that \(\lim _{n \rightarrow \infty}\left((\mu I-\bar{A}) x_{n}\right)=0\). We have
\[
0=\lim _{n \rightarrow \infty}\left(\mu x_{n}-\bar{A} x_{n}\right)=\lim _{n \rightarrow \infty}\left(\mu x_{n}-\overline{A \bar{x}_{n}}\right),
\]
which implies that \(0=\lim _{n \rightarrow \infty} \overline{\left(\mu x_{n}-\overline{A \bar{x}_{n}}\right)}=\lim _{n \rightarrow \infty}\left(\overline{\mu x}_{n}-A \bar{x}_{n}\right)\), and the second assertion holds. If \(\mu \in \sigma_{r}(\bar{A})\), then \(\operatorname{cl}(\operatorname{Im}(\mu I-\bar{A})) \neq H\) and vice versa. This holds if and only if there exists a nonzero vector \(z \in H\) which is orthogonal to \(\operatorname{Im}(\mu I-\bar{A})\). Hence for any \(x \in H\) we have
\(0=\langle(\mu I-\bar{A}) x, z\rangle=\left\langle x,(\mu I-\bar{A})^{*} z\right\rangle=\left\langle x,\left(\bar{\mu} I-A^{t}\right) z\right\rangle=\langle x, \bar{\mu} z\rangle-\left\langle x, A^{t} z\right\rangle=\) \(\mu\langle x, z\rangle-\langle\bar{z}, A \bar{x}\rangle=\mu\langle\bar{z}, \bar{x}\rangle-\langle\bar{z}, A \bar{x}\rangle=\langle\bar{z},(\bar{\mu} I-A) \bar{x}\rangle\).
Since \(x\) is arbitrary, thus \(\bar{z} \in(\operatorname{Im}(\bar{\mu} I-A))^{\perp}\) and \(\operatorname{cl}(\operatorname{Im}(\bar{\mu} I-A)) \neq H\). Therefore \(\bar{\mu} \in \sigma_{r}(A)\) and vice versa.

\section*{3. Decomposition of a Hilbert space}

Let \(H\) be a Hilbert space and \(\xi=\left\{e_{i} \mid i \in I\right\}\) be an orthonormal basis of \(H\). Define \(H_{\mathbb{R}}^{\xi}=\{x \in H \mid x=\bar{x}\}\). Since \(0=\overline{0}, 0 \in H_{\mathbb{R}}^{\xi}\). It is clear that \(H_{\mathbb{R}}^{\xi}\) is a subgroup of \(H\).

Theorem 3.1. Let \(H\) be a Hilbert space with orthonormal basis \(\xi=\left\{e_{i} \mid i \in I\right\}\). Then \(H \equiv H_{\mathbb{R}_{\xi}}^{\xi} \times H_{\mathbb{R}}^{\xi}\) and each \(x \in H\) can be uniquely written as \(x=a+i b\), where \(a, b \in H_{\mathbb{R}}^{\xi}\).

Proof. Let \(x \in H\) be arbitrary. We have \(\overline{x+\bar{x}}=\bar{x}+x\). Thus \(\bar{x}+x \in H_{\mathbb{R}}^{\xi}\). Also \(\overline{i(\bar{x}-x)}=i(\bar{x}-x)\). Then \(i(\bar{x}-x) \in H_{\mathbb{R}}^{\xi}\). Therefore \(x=a+i b\), where \(a=\frac{x+\bar{x}}{2}\) , \(b=\frac{i(\bar{x}-x)}{2}\) and \(a, b \in H_{\mathbb{R}}^{\xi}\). Now we show that the above decomposition is unique. Let \(x=a+i b=a^{\prime}+i b^{\prime}\) where \(a^{\prime}, b^{\prime} \in H_{\mathbb{R}}^{\xi}\) and
\[
a=\sum_{i \in I} a_{i} e_{i}, b=\sum_{i \in I} b_{i} e_{i}, a^{\prime}=\sum_{i \in I} a_{i}^{\prime} e_{i}, b^{\prime}=\sum_{i \in I} b_{i}^{\prime} e_{i} .
\]

Since \(a, b, a^{\prime}, b^{\prime} \in H_{\mathbb{R}}^{\xi}\), then for every \(i \in I, a_{i}, b_{i}, a_{i}^{\prime}, b_{i}^{\prime} \in \mathbb{R}\),
\[
\sum_{i \in I}\left(\left(a_{i}-a_{i}^{\prime}\right)+i\left(b_{i}-b_{i}^{\prime}\right)\right) e_{i}=0
\]

So we have \(a_{i}=a_{i}^{\prime}\) and \(b_{i}=b_{i}^{\prime}\) for every \(i \in I\), which proves the uniqueness.
We remark that if \(x=a+i b \in H\) and \(a, b \in H_{\mathbb{R}}^{\xi}\), then \(\bar{x}=a-i b\).
Theorem 3.2. Let \(A \in B(H)\) with orthonormal basis \(\xi=\left\{e_{i} \mid i \in I\right\}\). The following conditions are equivalent:
a) \(A \bar{x}=\overline{A x}\) for all \(x \in H\);
b) \(A=\bar{A}\);
c) \(H_{\mathbb{R}}^{\xi}\) is \(A\) - invariant \(\left(A\left(H_{\mathbb{R}}^{\xi}\right) \subseteq H_{\mathbb{R}}^{\xi}\right)\).

Proof. \(a \Rightarrow b\) and \(b \Rightarrow c\) are trivial. we prove \(c \Rightarrow a\).
Let \(x=\alpha+i \beta \in H\) be arbitrary and \(\alpha, \beta \in H_{\mathbb{R}}^{\xi}\). We have
\(A \bar{x}=A(\alpha-i \beta)=A \alpha-i A \beta\). Since we assumed that \(H_{\mathbb{R}}^{\xi}\) is \(A\) - invariant, then by previous remark we have
\[
A \alpha-i A \beta=\overline{A \alpha+i A \beta}=\overline{A(\alpha+i \beta)}=\overline{A x}
\]

Corollary 3.3. Let \(H\) be a Hilbert space with orthonormal basis \(\xi=\left\{e_{i} \mid i \in I\right\}\). Then for all \(x=a+i b \in H\) (where \(a, b \in H_{\mathbb{R}}^{\xi}\) ), \(\|x\|^{2}=\|a\|^{2}+\|b\|^{2}\).

Proof. We have
\[
\|x\|^{2}=\langle x, x\rangle=\langle a+i b, a+i b\rangle=\|a\|^{2}+\|b\|^{2}+i\langle b, a\rangle-i\langle a, b\rangle .
\]

We show that for all \(a, b \in H_{\mathbb{R}}^{\xi},\langle b, a\rangle=\langle a, b\rangle\).
Let \(a=\sum_{i \in I} a_{i} e_{i}, b=\sum_{j \in I} b_{j} e_{j}\). (Since \(a, b \in H_{\mathbb{R}}^{\xi}\), we have \(a_{i}, b_{j} \in \mathbb{R}\), for any
\(i, j \in I)\). It follows that
\(\langle a, b\rangle=\left\langle\sum_{i \in I} a_{i} e_{i}, \sum_{j \in I} b_{j} e_{j}\right\rangle=\sum_{i \in I} \sum_{j \in I} a_{i} \bar{b}_{j}\left\langle e_{i}, e_{j}\right\rangle=\sum_{j \in I} \sum_{i \in I} b_{j} a_{i}\left\langle e_{j}, e_{i}\right\rangle=\) \(\left\langle\sum_{j \in I} b_{j} e_{j}, \sum_{i \in I} a_{i} e_{i}\right\rangle=\langle b, a\rangle\).
Thus \(\|x\|^{2}=\|a\|^{2}+\|b\|^{2}\) as asserted.

Definition 3.4. Let \(H\) be a Hilbert space. The operator \(A \in B(H)\) is called self-conjugate, if \(A=\bar{A}\).

Let
\[
B(H)_{\mathbb{R}}=\{A \in B(H): A=\bar{A}\}
\]

It is clear that for every Hilbert space \(H, B(H)_{\mathbb{R}}\) is a subring of \(H\).
Note that for elements of a Hilbert space the concept of conjugate depends on the orthonormal basis. However, for the sake of simplicity, we put aside the notation of orthonormal basis when we refer to the conjugate of Hilbert space elements.

Corollary 3.5. Assume that \(A \in B(H)_{\mathbb{R}}\). Then \(A^{t}, A^{*} \in B(H)_{\mathbb{R}}\) and \(A^{-1} \in\) \(B(H)_{\mathbb{R}}\) if \(A\) is invertible.

Proof. Let \(A \in B(H)_{\mathbb{R}}\) and \(x, y \in H\) be arbitrary. We have
\[
\left\langle\overline{\left(A^{t}\right)} x, y\right\rangle=\overline{\left\langle A^{t} \bar{x}, \bar{y}\right\rangle}=\overline{\langle A y, x\rangle}=\langle\overline{A y}, \bar{x}\rangle=\langle A \bar{y}, \bar{x}\rangle=\left\langle A^{t} x, y\right\rangle .
\]

Since \(x, y\) are arbitrary, we have \(A^{t} \in B(H)_{\mathbb{R}}\). Similarly, \(A^{*} \in B(H)_{\mathbb{R}}\). Now let \(A\) be invertible and \(x, y \in H\) be arbitrary. Consider \(A^{-1} \bar{y}=y_{0}, A^{-1} \bar{x}=x_{0}\).
By Theorem 3.2, \(A \overline{x_{0}}=\overline{A x_{0}}=x\) and \(\overline{A y_{0}}=y\). Thus,
\(\left.\left\langle\overline{\left(A^{-1}\right.}\right) x, y\right\rangle=\overline{\left\langle\left(A^{-1}\right) \bar{x}, \bar{y}\right\rangle}=\overline{\left\langle x_{0}, A y_{0}\right\rangle}=\left\langle\overline{x_{0}}, \overline{A y_{0}}\right\rangle=\left\langle A^{-1}\left(A \overline{x_{0}}\right), \overline{A y_{0}}\right\rangle=\) \(\left\langle A^{-1}\left(\overline{A x_{0}}\right), \overline{A y_{0}}\right\rangle=\left\langle A^{-1} x, y\right\rangle\).
Hence, our claim follows.
In the following theorem we deduce a necessary and sufficient condition for \(W(D)\) to be a subset of \(\{(r, r): r \in \mathbb{R}\}\) when \(D \in B(H)\).

Theorem 3.6. Let \(D=A+i B \in B(H)\) and \(A, B \in B(H)_{\mathbb{R}}\). Then \(W(D) \subseteq\) \(\{(r, r): r \in \mathbb{R}\}\) if and only if \(B=A^{t}\).

Proof. Let \(H\) be a Hilbert space and \(\xi=\left\{e_{i} \mid i \in I\right\}\) be an orthonormal basis. Let \(x=a+i b \in H\) be arbitrary where \(a, b \in H_{\mathbb{R}}^{\xi}\) and let \(D=A+i A^{t}\). Then \(\langle D x, x\rangle=\left\langle\left(A+i A^{t}\right)(a+i b), a+i b\right\rangle=\left(\langle A a, a\rangle-\left\langle A^{t} b, a\right\rangle+\langle A b, b\rangle+\left\langle A^{t} a, b\right\rangle\right)+\) \(i\left(\langle A b, a\rangle+\left\langle A^{t} a, a\right\rangle-\langle A a, b\rangle+\left\langle A^{t} b, b\right\rangle\right)=(\langle A a, a\rangle-\langle A a, b\rangle+\langle A b, b\rangle+\langle A b, a\rangle)+\) \(i(\langle A b, a\rangle+\langle A a, a\rangle-\langle A a, b\rangle+\langle A b, b\rangle)\).
Since \(\langle A a, a\rangle-\langle A a, b\rangle+\langle A b, b\rangle+\langle A b, a\rangle \in \mathbb{R}\), the result follows.
Conversely let \(W(D) \subseteq\{(r, r): r \in \mathbb{R}\}\). Then \(D\) is essentially self adjoint[4,5,6]. Therefore \(D=\alpha H+\beta I\) for some \(\alpha, \beta \in \mathbb{C}\) and \(H\) is Hermitian and there exists a Hermitian operator \(T\) such that \(D=e^{\frac{i \pi}{4}} T\). Set \(T=T_{1}+i T_{2}\) where \(T_{1}, T_{2} \in B(H)_{\mathbb{R}}\). Since \(T=T^{*}\), thus \(T_{1}+i T_{2}=T_{1}^{*}-i T_{2}^{*}\). By Corollary 3.5,
\(T_{1}^{*}, T_{2}^{*} \in B(H)_{\mathbb{R}}\) and \(T_{1}=T_{1}^{*}, T_{2}=-T_{2}^{*}\). Then \(T_{1}=T_{1}^{t}, T_{2}=-T_{2}^{t}\). Now we have
\[
D=e^{\frac{i \pi}{4}}\left(T_{1}+i T_{2}\right)=\frac{\sqrt{2}}{2}\left(T_{1}-T_{2}\right)+i \frac{\sqrt{2}}{2}\left(T_{1}-T_{2}\right)^{t}
\]

If \(A=\frac{\sqrt{2}}{2}\left(T_{1}-T_{2}\right)\), the proof is complete.
Theorem 3.7. Let \(A \in B(H)\) and \(A x=\bar{A} x\) for some \(0 \neq x \in H\). Then
\[
W(A) \bigcap W(\bar{A}) \bigcap \mathbb{R} \neq \emptyset
\]

Proof. We may assume that \(x\) is a unit vector. Then \(\mu=\langle A x, x\rangle=\langle\bar{A} x, x\rangle \in\) \(W(\bar{A})\). Hence \(\mu \in W(A) \bigcap W(\bar{A})\). Since \(W(\bar{A})=\overline{W(A)}\) by Theorem 2.3, we have \(\bar{\mu} \in W(\bar{A}) \bigcap W(A)\). By convexity of numerical range the line segment joins \(\mu\) and \(\bar{\mu}\) lies in \(W(A)\) and \(W(\bar{A})\). This line segment intersects the real line and the result follows.

Theorem 3.8. Let \(H\) be a Hilbert space and \(A \in B(H)\). \(A=\lambda I\) for some \(\lambda \in \mathbb{C}\) if and only if for every \(\alpha \in \mathbb{C}\), there exists a scalar \(\beta \in \mathbb{C}\) such that \(\alpha A+\beta I\) is self-conjugate.

Proof. The implication \((\Rightarrow)\) is clear. Suppose that for every \(\alpha \in \mathbb{C}\), there exists \(\beta \in \mathbb{C}\) such that \(\alpha A+\beta I\) is self-conjugate. If \(H\) is one dimensional the result holds. Let \(\xi=\left\{e_{i}\right\}_{i \in I}\) be an orthonormal basis for \(H\) and \(e_{j}, e_{k} \in \xi\) be arbitrary and distinct. First we prove that \(A\) is diagonal. Suppose \(A e_{j}=\) \(\Sigma_{i \in I} \alpha_{i} e_{i}\) and \(A e_{k}=\Sigma_{i \in I} \beta_{i} e_{i}\). For every \(\alpha \in \mathbb{C}\), there exists \(\beta \in \mathbb{C}\) such that \((\alpha A+\beta I) e_{j}=\Sigma_{i \in I} r_{i} e_{i},(\alpha A+\beta I) e_{k}=\Sigma_{i \in I} s_{i} e_{i}\), and \(r_{i}, s_{i} \in \mathbb{R}\) for every \(i \in I\). Hence, for every \(i \neq j, \alpha \alpha_{i}=r_{i} \in \mathbb{R}\) and for every \(i \neq k, \alpha \beta_{i}=s_{i} \in \mathbb{R}\). Since \(\alpha\) is arbitrary, we must have \(\alpha_{i}=0\) for every \(i \neq j\) and \(\beta_{i}=0\) for every \(i \neq k\). Since \(e_{j}, e_{k} \in \xi, A\) is diagonal. Now, suppose that \(A e_{j}=\lambda_{j} e_{j}\) and \(A e_{k}=\lambda_{k} e_{k}\). It is enough to show that \(\lambda_{j}=\lambda_{k}\). But for every \(\alpha \in \mathbb{C}\), there exists \(\beta \in \mathbb{C}\), such that \(\alpha \lambda_{j} e_{j}+\beta e_{j}=r_{j} e_{j}\) and \(r_{j} \in \mathbb{R}\), and we have \(\alpha \lambda_{k} e_{k}+\beta e_{k}=s_{k} e_{k}\) where \(s_{k} \in \mathbb{R}\). Thus for every \(\alpha \in \mathbb{R}, \alpha\left(\lambda_{j}-\lambda_{k}\right) \in \mathbb{R}\). Hence \(\lambda_{j}-\lambda_{k}=0\) and the result follows.

Acknowledgments. We would like to thank referees because of the useful comments and whose suggestions improved this paper considerably.

\section*{References}
[1] C. Davis, The shell of a Hilbert-space operator, Acta Sci. Math., 29, (1968), 69-86.
[2] C. Davis, The shell of a Hilbert-space operator. II, Acta Sci. Math., 31, (1970), 301-318.
[3] H. R. Dowson, Spectral theory of linear operators, Academic press, London, 1978.
[4] K. E. Gustafson and D. K. M. Rao, Numerical ranges, Springer, New York, 1997.
[5] P. Halmos, A Hilbert Space Problem Book, Second edition, Spring-Verlag, New York, 1982.
[6] M. T. Heydari, C*-Algebra Numerical Range of Quadratic Elements, Iranian Journal of Mathematical Sciences and Informatics, 5(1), (2010), 49-53.
[7] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[8] C. K. Li, Y. T. Poon and N. S. Sze, Davis-Wielandt shells of operators, Acta Sci. Math., 2, (2008), 341-357.
[9] H. Wielandt, On eigenvalues of sums of normal matrices, Pacific J. Math., 5 (1955), 633-638.```

